Metformin reduces NAD(P)H oxidase activity in mouse cultured podocytes through purinergic dependent mechanism by increasing extracellular ATP concentration.

نویسندگان

  • Agnieszka Piwkowska
  • Dorota Rogacka
  • Maciej Jankowski
  • Stefan Angielski
چکیده

Hyperglycemia affects the functioning numbers of podocytes and leads to a gradual decline of renal function. The normalization of glucose level is a principle therapeutic goal in diabetic patients and metformin is a popular hypoglycemic drug used in type 2 diabetes mellitus. Metformin activates AMP-activated kinase (AMPK) and decreases NAD(P)H oxidase activity in podocytes leading to reduction of free radical generation. Similar effects are observed after activation of P2 receptors. Therefore, we investigated whether metformin increases extracellular ATP concentration and affects the activities of NAD(P)H oxidase and AMPK through P2 receptors. Experiments were performed on cultured mouse podocytes. NAD(P)H oxidase activity was measured by chemiluminescence and changes in AMPK activity were estimated by immunoblotting against AMPKα-Thr(172)-P. Metformin increased extracellular ATP concentration by reduction of ecto-ATPase activity, decreased NAD(P)H oxidase activity and increased AMPK phosphorylation. A P2 receptor antagonist, suramin (300 µM), prevented metformin action on NAD(P)H oxidase and AMPK phosphorylation. The data suggests a novel mechanism of metformin action, at least in podocytes. Metformin, which increases extracellular ATP concentration leads to activation of P2 receptors and consequent modulation of the podocytes' metabolism through AMPK and NAD(P)H oxidase which, in turn, may affect podocyte functioning.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Extracellular nucleotides regulate cellular functions of podocytes in culture.

Extracellular nucleotides are assumed to be important regulators of glomerular functions. This study characterizes purinergic receptors in podocytes. The effects of purinergic agonists on electrophysiological properties and the intracellular free Ca(2+) concentration of differentiated podocytes were examined with the patch-clamp and fura 2 fluorescence techniques. mRNA expression of purinergic ...

متن کامل

P-37: The Effect of Extracellular Calcium Concentration on the In vitro Maturation of Mouse Oocytes after Mechanical Stimulation by Hydrostatic Pressure

Background: Oocyte maturation is usually defined as the period of progression from the first to the second meiotic arrest and involves coordinated nuclear and cytoplasmic modification. Ca2+ signals are known as important regulators of oocyte maturation. Extracellular Ca2+ is important for first polar body formation, normal meiosis kinetics, and for preserving the chromosome and spindle configur...

متن کامل

Extracellular Atp Inhibits the Small-Conductance K Channel on the Apical Membrane of the Cortical Collecting Duct from Mouse Kidney

We have used the patch-clamp technique to study the effects of changing extracellular ATP concentration on the activity of the small-conductance potassium channel (SK) on the apical membrane of the mouse cortical collecting duct. In cell-attached patches, the channel conductance and kinetics were similar to its rat homologue. Addition of ATP to the bathing solution of split-open single cortical...

متن کامل

ATP acting through P2Y receptors causes activation of podocyte TRPC6 channels: role of podocin and reactive oxygen species.

Extracellular ATP may contribute to Ca(2+) signaling in podocytes during tubuloglomerular feedback (TGF) and possibly as a result of local tissue damage. TRPC6 channels are Ca(2+)-permeable cationic channels that have been implicated in the pathophysiology of podocyte diseases. Here we show using whole cell recordings that ATP evokes robust activation of TRPC6 channels in mouse podocyte cell li...

متن کامل

Metformin and liraglutide ameliorate high glucose-induced oxidative stress via inhibition of PKC-NAD(P)H oxidase pathway in human aortic endothelial cells.

OBJECTIVE Metformin and glucagon like peptide-1 (GLP-1) prevent diabetic cardiovascular complications and atherosclerosis. However, the direct effects on hyperglycemia-induced oxidative stress in endothelial cells are not fully understood. Thus, we aimed to evaluate the effects of metformin and a GLP-1 analog, liraglutide on high glucose-induced oxidative stress. METHODS Production of reactiv...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Acta biochimica Polonica

دوره 60 4  شماره 

صفحات  -

تاریخ انتشار 2013